
Rendering and Compositing Infrastructure

Improvements to VisIt for Insitu Rendering

Burlen Loring and Oliver Rübel

Lawrence Berkeley National Lab

January 28, 2016



Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, in part through the grant
“Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery,” program
manager Dr. Lucy Nowell. This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency
thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express
or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by its trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof, or the Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the University of California.

Copyright

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher,
by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for U.S. Government purposes.

1



Abstract

Compared to posthoc rendering, insitu rendering often generates larger numbers of images, as a result
rendering performance and scalability are critical in the insitu setting. In this work we present im-
provements to VisIt’s rendering and compositing infrastructure that deliver increased performance and
scalability in both posthoc and insitu settings. We added the capability for alpha blend compositing and
use it with ordered compositing when datasets have disjoint block domain decomposition to optimize
the rendering of transparent geometry. We also made improvements that increase overall efficiency by
reducing communication and data movement and have addressed a number of performance issues. We
structured our code to take advantage of SIMD parallelization and use threads to overlap communication
and compositing. We tested our improvements on a 20 core workstation using 8 cores to render geometry
generated from a 2563 cosmology dataset and on a Cray XC31 using 512 cores to render geometry gen-
erated from a 20002 × 800 plasma dataset. Our results show that ordered compositing provides a speed
up of up to 4× over the current sort first strategy. The other improvements resulted in modest speed up
with one notable exception where we achieve up to 40× speed up of rendering and compositing of opaque
geometry when both opaque and transparent geometry are rendered together. We also investigated the
use of depth peeling, but found that the implementation provided by VTK is substantially slower,both
with and without GPU acceleration, than a local camera order sort.



Figure 1: Ordered compositing and image tiled compositing ex-
ample. The original domain decomposition is shown on the left. Or-
dered compositing renders the data using this decomposition. The
tiled image compositing decomposition is shown on the right. Tiled
compositing moves data to that decomposition prior to rendering.

composite order = 4 5 6 0 7 1 2 3

round 0: 4← 5, 6← 0, 7← 1, 2← 3

round 1: 4← 6, 7← 2

round 2: 4← 7

1 Introduction

Insitu visualization and analysis seeks to reduce or eliminate data movement to and from disk by linking
a simulation and a visualization run time using shared memory for data transfer. Insitu rendering has
the potential for huge reductions in I/O costs as problem sized data is reduced to a single image before
I/O. One potential drawback to insitu rendering is that one often doesn’t know which fields will be
interesting and which rendering parameters will produce the best result. For these reasons, compared
posthoc rendering, insitu rendering generates a larger number of images, covering more fields, and wider
array of rendering parameters. For these reasons rendering performance and scaling becomes a crucial
issue in the insitu setting.

We profiled VisIt during 3D simulations of proton accelerator using WarpIV, an insitu visualization
application that couples VisIt and Warp a laser plasma accelerator framework. Our profiling identified
the rendering and compositing of translucent geometry as issues.

In this work we present optimizations and improvements to VisIt’s rendering and compositing infras-
tructure. We added the capability for alpha blend compositing and use it with ordered compositing when
datasets have disjoint block domain decomposition to increase performance when rendering transparent
geometry. We also made improvements that increase overall efficiency and addressed a number of per-
formance issues. We structured our code to take advantage of SIMD parallelization and use threads to
overlap communication and compositing. We tested our work on a 20 core workstation using 8 cores to
render geometry generated from a 2563 cosmology dataset and on a Cray XC31 using 512 cores to render
geometry generated from a 20002 × 800 plasma dataset. Our results show that ordered compositing
provides a speed up of up to 4× over the current sort first strategy. The other improvements resulted
in modest speed up with one notable exception where we achieve up to 40× speed up of rendering and
compositing of opaque geometry when both opaque and transparent geometry are rendered together.
We also investigated the use of depth peeling, but found that the implementation provided by VTK is
substantially slower,both with and without GPU acceleration, than a local camera order sort.

2 Description of the Work

Prior to our work VisIt always used a “sort first” strategy for rendering transparent geometry in parallel.
In this strategy prior to rendering data was moved using MPI such that each process had all the geometry
covered by a screen space tile. After rendering each process sends its tile to rank 0 for assemblage. In this
arrangement one can apply serial rendering algorithms, and alpha blend compositing is not necessary.
This is illustrated in figure 1. On the left a dataset with 10 iso-surfaces is shown. The coloring by MPI
rank id reveals the block based domain decomposition. In the sort first strategy, prior to rendering, the
transparent geometry is moved to the screen space domain decomposition shown on the right. In what

1



Data rendered, Plasma

type desc. zones

opaque 3 slice 7190403

trans. 20 iso 464815961

Speedup vs trunk

total 8.34

opaque 52.65

transparent 5.12

Render and Composite Time

code configuration total trans. opaque

opt.
global sort 21.0305 20.6666 0.354182

ordered comp. 4.55346 4.06768 0.326197

trunk global sort 37.9864 20.8121 17.1737

Figure 2: Top: 20002 × 800 plasma dataset Bottom Left: Speedup of rendering and compositing using 512 cores,
and 2 threads, on the 20002 × 800 plasma dataset. Total and per pass time are shown. In the opaque pass z-buffer
compositing is used while in the transparent pass ordered compositing and alpha blending are used. Bottom Right: Data
and measurements.

follows we refer to this data movement as a “global sort”. The global sort is expensive because all of the
data may need to be moved and it doubles the amount of memory used to store transparent geometry.

Our work builds on VisIt svn rev 27127(9/9/2015). We used rev 27127 as the baseline to compare
our optimizations against. Parallel rendering in VisIt occurs in two logical passes, a pass for opaque
geometry, and a pass for transparent geometry. Prior to our work, the opaque pass included a depth
based composite where the unsigned char r,g,b color channels and float depth values are packed into
an AOS(array of structures) layout and composited in user defined MPI reduction operation; and the
transparent pass included a distributed global geometry sort which moves data onto a decomposition
such that each rank ends up with geometry for a unique screen space tile, followed by a local camera
order sort and render, followed by an MPI gather of each ranks tile to rank 0.

Our work extended the transparent rendering and compositing capabilities of VisIt in four main ways:

• We implemented an alpha blending compositer and a depth based compositer. Our new compositer
operates on SOA(structures of arrays) data layout to make use of compiler auto-vectorization. We
used threads to overlap communication and compositing. We arranged the communications in a
binary tree pattern but also made provision for supporting a variety of alternative communication
patterns.

• We implemented the ordered compositing optimization, which for translucent block domain de-
composed data eliminates the communication associated with the global sort and cuts memory
overhead in half.

2



Cosmology data rendered

type desc. num zones

opaque 1 iso 488520

trans. 10 iso 9884369

Speedup compared to trunk

GTX770

total 3.98

opaque 11.64

transparent 2.73

OSMesa

total 2.83

opaque 11.34

transparent 2.08

Render and Composite Time, Cosmology

OSMesa 7.10 NVIDIA GTX770 GPU

code configuration total trans. opaque total trans. opaque

opt.

global sort 4.30541 4.11388 0.187808 2.51254 2.33435 0.174466

ordered comp. 2.16096 1.93264 0.184575 1.09519 0.860169 0.172628

depth peel 42.0545 41.8255 0.185432 6.2353 6.02038 0.170824

trunk global sort 6.11546 4.02224 2.09239 6.11546 4.02224 2.09239

Figure 3: Top Left: 2563 cosmology dataset. Top Right: Speedup of total rendering and compositing time using 8
cores, and 2 threads, on the 2563 cosmology dataset. Total and per pass time are shown. In the opaque pass z-buffer
compositing is used while in the transparent pass ordered compositing and alpha blending are used. Bottom: Data and
measurements.

code point bounds param

old 2.58 sec 3.05 sec 3.19 sec

new 0.82 sec 1.02 sec 1.65 sec

speed up 3.14 x 2.98 x 1.93 x

Figure 4: Left:Time and speed up of just the depth sort sorting the iso-surfaces shown in figure 3 using
1 core. Right: Recorded times.

3



Figure 5: Left: Spheres rendered with camera order sort. Right: Spheres rendered with depth peeling. Far Right:
Depth peeling performance.

• We added the capability to enable VTK’s depth peeling algorithm from VisIt’s GUI.

• We optimized code, cleaned up, and fixed bugs as we went.

3 Optimizations and Improvements

Ordered Compositing

Ordered compositing is an optimization for rendering translucent block decomposed data. When the
decomposition’s block’s bounds are mutually disjoint one can find a compositing order that produces the
same result as a global sort without moving any data. Compared to the sort-first strategy rather than
re-distributing geometry in a global sort, ordered compositing renders the data in place and uses alpha
bend compositing to combing each processes rendering. Ordered compositing is faster when the amount
of data to move in the global sort is large. An example is shown in figure 1. The data is rendered using
the domain decomposition shown on the left. Our alpha blending compositer makes use of associativity
of the alpha blending operation and structures the compositing in a binary tree. The compositing order
and subsequent tree is shown in the table in figure 1. When the root of the tree is not rank 0, the final
image needs to be transferred to rank 0.

Depth Sort

The primary mechanism for correctly rendering translucent geometry in VisIt is a camera order geometry
sort, this is generally called depth sort. VisIt makes use of VTK’s depth sort called vtkDepthSortPoly-
Data. Our profiling of the VTK class revealed several opportunities which we capitalized on:

• replaced qsort with std::sort to take advantage of compiler in-lining

• replace GetCell with GetCellPoints. GetCell explicitly constructs a VTK cell object containing a
number of sub-objects using virtual API. Because we only need the cell’s points, constructing a cell
object is over kill. The GetCellPoints API copies the point indices into an array, we then access
the points in-place without copying them. This change requires templates, the use of which further
improves the compiler ability to optimize.

• refactor the bounds computations so the compiler can vectorize it using SIMD instructions.

• Refactor vtkPolyData::BuildCells to avoid the virtual vtkDataSet API

• Move the non-virtual vtkPolyData::GetCellPoints into the header to enable in-lining

• Add a non-virtual vtkPolyData::GetCell to enable fast out of order transfer of cells from one dataset
to another. With this method one may use memcpy cell by cell.

4



Depth Peeling

We investigated the use of depth peeling, a GPU accelerated algorithm that would eliminate the need
for local camera order geometry sort during translucent rendering. There are two user modify-able
parameters in VTK’s implementation, number of peels and occlusion ratio. The occlusion ratio sets
a threshold on the the fraction of pixels changed per peel below which the algorithm terminates. The
number of peels sets the maximum number of peels to perform. When the occlusion ratio is set to zero all
of the peels are performed. We found that for complex scenes 32 peels and a occlusion ratio of 0.01 were
reasonable settings, and as expected when rendering simple scenes the non-zero occlusion ratio resulted
in early termination and better performance.

Other Improvements

While implementing ordered compositing, writing our compositer, and refactoring existing code, we
investigated the following other optimizations:

• SIMD vectorization of the depth and blending compositer kernels

• using threads to overlap communication and compositing

• eliminating memcpy where ever possible, including making better use of shallow copy of VTK
objects

• eliminate read-back from OpenGL if not using the channel

• eliminating or reducing communication where ever possible

• only update sorting pipeline when dependent input parameters change

• use templates to avoid memcpy and conversion and improve compiler optimization

Most of these are what could be considered contemporary “best practices” for C++ development.

4 Results

We benchmarked our work on two datasets, a 2563 cosmology simulation and a 20002 × 800 plasma
simulations, on two systems, a 20 core graphics workstation using 8 cores and a Cray XC31 using 512
cores. The details can be found in the tables in figures 3 and 2. Our primary optimization, ordered
compositing, generally produced substantial speed up. The results are dependent on the geometry size
and the number of processes used. In our tests we achieved ≈ 2× speed up on the workstation and
≈ 4× speed up on the Cray. In general during the opaque pass we achieved a modest speed-up of on
the order of 10%. However, when both rendering passes were active (because there is both opaque and
translucent geometry), during the opaque pass we achieved ≈ 11× speed up on the workstation using
8 cores, and ≈ 50× speed-up on the Cray using 512 cores. This is due to a bug we fixed that was
causing the translucent geometry to be sorted (global+local) twice. On the workstation we looked at the
performance both using OSMesa a software OpenGL implementation and using a hardware accelerated
OpenGL using an NVIDIA GTX770 card. The speedup is higher on the GPU because rendering time
is a significant portion of the total time, meaning improvements there magnify the impact of the other
optimizations.

Depth Peeling

Unfortunately we found VTK’s depth peeling algorithm to be substantially slower than the local geometry
sort. The results are shown right most panel of figure 5.

Despite its poor performance depth peeling is a useful feature because VTK doesn’t split intersecting
geometry. The left two panels of figure 5 show a comparison of rendering using local geometry sort on
the left and depth peeling on the right. Artifacts from intersecting geometry are present in the locally
sorted rendering. Depth peeling is slower but produces the correct result. For this reason it is a useful
feature to have available.

5



Figure 6: Additions to VisIt’s GUI controlling ordered compositing and depth peeling.

5 VisIt integration:

We added controls in VisIt’s GUI for the new features. These are shown in figure 6. Ordered compositing
is enabled by default but can be optionally disabled. Depth peeling is disabled by default be can be
optionally enabled.

6 Conclusion

Compared to posthoc rendering, insitu rendering often generates larger numbers of images, as a result
rendering performance and scalability are critical in the insitu setting. We implemented improvements
to VisIt’s rendering and compositing infrastructure that deliver increased performance and scalability in
both posthoc and insitu settings. Specifically we have added alpha bend compositing capability to VisIt
and applied the well known ordered compositing optimization for transparent rendering, optimized the
camera order sorting algorithm in VTK, and have addressed a number of performance and efficiency
issues in VisIt. The impact is that VisIt performs is better prepared for insitu rendering work loads.

6


